Inverse Gas Chromatography with Film Cell Unit: An Attractive Alternative Method to Characterize Surface Properties of Thin Films.
نویسندگان
چکیده
Inverse gas chromatography (IGC) is widely used for the characterization of surfaces. The present work describes a novel IGC tool, the recently developed film cell module, which measures monolithic thin solid film surface properties, whereas only samples in powder or fiber state or polymer-coated supports can be studied by classic IGC. The surface energy of four different solid supports was measured using both classic IGC with columns packed with samples in the powder state, and IGC with the new film cell module or the sessile drop technique, using samples in the film state. The total surface energy and its dispersive and specific components were measured for glass, polyethylene, polyamide and polytetrafluoroethylene. Similar results were obtained for the four materials using the three different techniques. The main conclusion is that the new film cell module for IGC is an attractive alternative to the sessile drop technique as it gives very accurate and reproducible results for surface energy components, with significant savings in time and the possible control of sample humidity and temperature. This film cell module for IGC extends the application field of IGC to any thin solid film and can be used to study the effect of any surface treatment on surface energy.
منابع مشابه
Investigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application
CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...
متن کاملFabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process
Cu(In,Ga)Se2 thin films (CIGS) on metallic substrate (titanium, molybdenum, aluminum, stainless steel) were prepared by a two-step selenization of Co-evaporated metallic precursors in Se-containing environment under N2 gas flow. Structural properties of prepared thin film were studied. To characterize the optical quality and intrinsic defect nature low-temperature photoluminescence, were perfor...
متن کاملImproving Electrochromic Properties of WO3 Thin Film with Gold Nanoparticle Additive
In this research, WO3 and Au-WO3 thin films were prepared at different temperatures using the sol gel method. The effect of gold nanoparticles (GNPs) on the electrochromic properties of WO3 was also studied. 2.5 nm GNP was synthesized through sodium citrate reduction of gold chloride in an aqueous solution. These films were characterized by XRD, SEM, TEM, and spectrophotometer analyses. The fil...
متن کاملSynthesis of Boron-Aluminum Nitride Thin Film by Chemical Vapour Deposition Using Gas Bubbler
Boron included aluminium nitride (B-AlN) thin films were synthesized on silicon (Si) substrates through chemical vapour deposition ( CVD ) at 773 K (500 °C). tert-buthylamine (tBuNH2) solution was used as nitrogen source and delivered through gas bubbler. B-AlN thin films were prepared on Si-100 substrates by varying gas mixture ratio of three precursors. The structural properties of the films ...
متن کاملBand-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chromatographic science
دوره 53 8 شماره
صفحات -
تاریخ انتشار 2015